Cancer Institute National

Radiation Dosimetry and Organ Doses from Imaging

May 2011

Choonsik Lee Radiation Epidemiology Branch DCEG/NCI/NIH

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health

Contents

- Introduction
 - Radiation imaging
 - Radiation dosimetry in imaging
 - Organ dose estimation
- Dosimetry in major imaging modalities
 - Radiography
 - Mammography
 - Fluoroscopy
 - Computed tomography

Radiation Imaging

X-ray

Discovery

Discovered by Wilhelm Rontgen (1895)
 ("X" is indicating "unknown")

Findings

- Travels in straight lines
- Make shadows of absorbing material on photosensitive paper!

National Cancer Institute

X-ray generation

Different imaging modalities

Computed Tomography

*Use different mechanism from other imaging modalities

Interventional fluoroscopy

National Cancer Institute

Current status of procedures (US 2006)*

Modality	Number of procedures	%
Radiography	293 million	74
CT	67 million	17
Nuclear Medicine	18 million	5
Interventional Fluoroscopy	17 million	4
Radiotherapy	1 million patients	NA

^{*} Mettler et al. Radiology (2009)

Changes in U.S. medical radiation exposure*

Total 3.6 mSv (effective dose) per capita

Total 6.2 mSv (effective dose) per capita

Study type	Relevant organ	Organ dose (mGy)
Dental radiography	Brain	0.005
PA chest radiography	Lung	0.01
Lateral chest radiography	Lung	0.15
Screening mammography	Breast	3
Adult abdominal CT	Stomach	10
Barium enema	Colon	15
Neonatal abdominal CT	Stomach	20

^{*} Brenner et al. NEJM (2007)

Type of examination	Effective dose (mSv)f				
Radiography (single radiograph) ^a					
Skull AP or PA	0.015(1)				
Chest PA	0.013(1)				
T-spine AP	0.27 (20)				
L-spine AP	0.44 (30)				
Abdomen AP	0.46 (35)				
Pelvis AP	0.48 (35)				
Mammography (4 views) ^b					
Screening	0.2 (15)				

Type of examination	Effective dose (mSv)f			
Dental radiography ^c				
Intra oral	0.013(1)			
Panoramic	0.012(1)			
Diagnostic fluoroscopy procedures				
Barium swallow ^a	1 (70)			
Barium meal ^a	2 (150)			
Barium enema ^a	5 (350)			
Angiography—cerebral ^c	2 (150)			
Angiography—cardiac ^c	7 (500)			

Type of examination	Effective dose (mSv)f			
Computed tomography ^d				
Head	2 (150)			
Chest	10 (750)			
Abdomen	10 (750)			
Pelvis	7 (500)			
Abdomen/pelvis	15 (1,100)			
C-spine	5 (400)			
T-spine	8 (550)			
L-spine	7 (500)			

Type of examination	Effective dose (mSv) ^f
Diagnostic nuclear medicine ^e	
Bone (^{99m} Tc-phosphate)	3 (200)
Heart (²⁰¹ Tl thallous chloride)	13 (950)
Lung (^{99m} Tc-MAA)	0.9 (70)
Tumor-PET(¹⁸ F-FDG)	7 (500)
Kidney (^{99m} Tc-MAG3)	0.6 (40)
Thyroid (^{99m} Tc-Pertechnetate)	0.9 (70)

Radiation dosimetry in imaging

What is Dosimetry?

• Definition: determination of radiation dose resulting from the interaction of ionizing radiation with matter

Who's getting radiation dose?

National Cancer Institute

Dosimetric quantities*

Kinetic energy <u>deposited</u> in matter

Kinetic energy <u>released</u> in matter

Radiation weighting factor*

Table 2. Recommended radiation weighting factors.

Radiation type	Radiation weighting factor, w _R
Photons	1
Electrons ^a and muons	1
Protons and charged pions	2
Alpha particles, fission frag- ments, heavy ions	20
Neutrons	A continuous function of neutron energy (see Fig. 1 and Eq. 4.3)
$w_{\rm R} = \begin{cases} 2.5 + 18.2 \ e^{-[\ln(E_{\rm n})]^2/6}, \\ 5.0 + 17.0 \ e^{-[\ln(2E_{\rm n})]^2/6}, \\ 2.5 + 3.25 \ e^{-[\ln(0.04E_{\rm n})]^2/6}, \end{cases}$	$E_{\rm n} < 1~{ m MeV}$
$w_{\rm R} = \left\{ 5.0 + 17.0 e^{-[\ln(2E_{\rm n})]/6}, \right.$	$1 \text{ MeV} \leqslant E_{\text{n}} \leqslant 50 \text{ MeV}$
$(2.5 + 3.25 e^{-[\ln(0.04E_n)]^2/6})$	$E_{\rm n} > 50~{ m MeV}$

Tissue weighting factor*

Table 3. Recommended tissue weighting factors.

Tissue	w_{T}	$\sum w_{\mathrm{T}}$
Bone-marrow (red), Colon, Lung, Stomach,	0.12	0.72
Breast, Remainder tissues*		
Gonads	0.08	0.08
Bladder, Oesophagus, Liver, Thyroid	0.04	0.16
Bone surface, Brain, Salivary glands, Skin	0.01	0.04
	Total	1.00

^{*} Remainder tissues: Adrenals, Extrathoracic (ET) region, Gall bladder, Heart, Kidneys, Lymphatic nodes, Muscle, Oral mucosa, Pancreas, Prostate (3), Small intestine, Spleen, Thymus, Uterus/cervix (2).

Dosimetric quantities*

Kinetic energy <u>deposited</u> in matter

Kinetic energy <u>released</u> in matter

Organ dose estimation for medically-exposed patients

- Controlled
- Relatively well documented

(1) Measurement

- Expensive
- Substantial man-hour
- Not individualized

(2) Calculation

- 30+ organ doses
- Bone marrow dose
- Highly individualized

- Cost-effective
- Fewer man-hour
- More flexible

(3) Conversion Factor

Derived from computer simulations

Dosimetry in major imaging modalities

Radiography

Factors affecting dose in radiography

Beam energy

- Primarily depends on the tube potential (kVp) and filtration
- Higher energy beam is more penetrating to reach image receptor
- Lower tube current or shorter imaging time
- Reduce the dose to the patient

Filtrations

- Total filtration = Inherent filtration + Added filtration
- Remove low-energy x-ray which can be absorbed by the patient

Collimation

- Limit the exposed area in the patient
- Reduce the scattered radiation and increase image contrast

Factors affecting dose in radiography

Grids

- Reduce the scattered radiation contribution to improve image contrast
- Also absorb a portion of non-scattered radiation
- Cause increase current and time giving more doses to the patient

Patient size

- Need more radiation to get an acceptable image for thicker patient
- Technique charts displaying suggested technique factors for different exams and patient thicknesses will be helpful

Organ dose estimation: Conversion factors

- "Handbook of selected tissue doses for projections common in diagnostic radiology" (Rosenstein, FDA89-8031, 1988)
 - Developed from adult male and female computational phantoms coupled with Monte Carlo transport technique
 - Provide organ doses per unit exposure (measurable) for comprehensive technique factors

Organ dose estimation: Conversion factors

TABLE 24. PA CHEST - SID: 72" (183 cm); FIELD SIZE at FILM: 14" X 17" (35.6 cm X 43.2 cm)

MALE			T f	rissue do for 1 R E	SES (mra XPOSURE	nd) and C at SKIN	ANCER DE	TRIMENT (FREE-I	N-AIR)"'	b		
HVL (mm Al) →	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5
LUNGS	124	216	301	375	439	493	539	578	610	637	660	678
ACTIVE BONE MARROW	27	49	71	92	113	131	149	165	180	194	207	219
THYROID	4.0	11	21	30	40	49	57	64	70	75	79	82
TRUNK TISSUE	52	82	109	132	152	170	185	199	210	221	230	238
CDI (10 ⁻⁵)	0.65	1.09	1.49	1.85	2.16	2.44	2.68	2.88	3.06	3.22	3.36	3.48
TESTES	+	+	+	+	+	0.1	0.1	0.1	0.1	0.1	0.1	0,2

Organ dose estimation: PCXMC

- A commercial computer program for calculating patients' organ and effective doses in radiography examinations
 - Developed by Tapiovaara et al. (STUK, Finland)
 - Current version, PCXMC 2.0 (released in Nov 2008)
 - Based on the computational phantoms (Cristy and Eckerman, 1987) coupled with Monte Carlo transport technique

Graphical interface for user input of technique factors

Radiography
Mammography
Fluoroscopy

Input measurement and organ dose output

Radiography Mammography

Risk assessment output

Radiography Mammography Fluoroscopy

Mammography

- Average (or mean) glandular dose (AGD)
 - Used to describe the dose to the breast
 - Considered to be at greatest risk
 - Replaced traditional quantities (skin dose, midplane breast dose, and etc.)

Factors affecting dose in mammography

- Beam energy
 - Approximately 24-30 kVp
 - Small difference in beam energy affect breast dose
 - Higher beam energy reduce breast dose
- Target material
 - Molybdenum (18 and 20 keV) and rhodium (20 and 23 keV)
 - Rhodium used for thicker breast
- Filter material
 - Molybdenum and rhodium

Factors affecting dose in mammography

Grids

- Reduce the scattered radiation to increase image contrast
- High contrast images are very important because of similar composition of glandular tissue with surrounding ones

Magnification

- Move breast closer to the x-ray tube
- 1.5 to 2.0 times magnified
- Increase breast dose according to the inverse square law

Factors affecting dose in mammography

- Breast thickness and tissue composition
 - Thick (or large) breasts or those with dense composition need higher energy beam and longer exposure time, and receive higher AGD
- Compression
 - Provides better imaging geometry
 - Lower AGD to the patient
 - More uniform exposure the breast

Organ dose estimation: Conversion factor

• The average glandular dose, $D_g = D_{gN} \times X_{ESE}$

X_{ESE}: the entrance skin exposure (measurable)

D_{gN}: ESE-to-AGD conversion factor (obtained from Monte Carlo simulation)

TABLE 8-6. DgN CONVERSION FACTOR (mRAD PER ROENTGEN) AS A FUNCTION OF HVL AND kVp FOR Mo TARGET/FILTER: 4.5-CM BREAST THICKNESS OF 50% GLANDULAR AND 50% ADIPOSE BREAST TISSUE COMPOSITION*

				k	Vp			
HVL (mm)	25	26	27	28	29	30	31	32
0.25	122							1
0.26	126	128						
0.27	130	132	134					
0.28	134	136	138	139				
0.29	139	141	142	143	144			
0.30	143	145	146	147	148	149		
0.31	147	149	150	151	152	153	154	
0.32	151	153	154	155	156	158	159	160
0.33	155	157	158	159	160	162	163	164
0.34	160	161	162	163	164	166	167	168
0.35	164	166	167	168	169	170	171	172
0.36	168	170	171	172	173	174	175	176
0.37		174	175	176	177	178	178	179
0.38			179	180	181	182	182	183
0.39				184	185	186	186	187
0.40					189	190	191	192

^{*}Adapted from ACR QC Manual, 1999.

Advanced conversion factor*

Table A3. Dose conversion coefficients (this work) derived for typical protocols by time period and compressed breast thickness (CBT).

Period	Technique	Target-filter	HVL ^a or filtration	c D T			Dose coefficient		
	•	8		CBT	K	: V	Ď	$\mathbf{D}_{\mathbf{g}\mathrm{N}}$	
				(cm)	min	max	min	max	
				3	22	24	0.305	0.353	
	Egan	W-Al	0.9 mm Al inherent	5	26	35	0.258	0.377	
1960-1964				8	26	35	0.169	0.255	
1900-1904		W-Al	1.5 mm Al	3	25	30	0.449	0.535	
	Gershon-Cohen		1mm inherent	5	25	30	0.294	0.365	
				8	25	30	0.192	0.243	
	Egan	Mo-Mo	HVL = 0.4	3	26	30	0.305	0.309	
				5	26	30	0.190	0.194	
				8	26	30	0.123	0.126	
			HVL = 0.61	3	26	30	0.449	0.453	
1965-1969				5	26	30	0.290	0.297	
				8	26	30	0.189	0.195	
			0.78 mm Al	3	26	30	0.347	0.375	
				5	26	30	0.217	0.238	
				8	26	30	0.141	0.156	

^{*} Thierry-Chef et al. (in review)

Period	Technique	Target-filter	\mathbf{HVL}^a or filtration	СВТ	kV		Dose coefficient \mathbf{D}_{eN}	
				(cm)	min	max	min	max
			HVL = 1	3	40	55	0.652	0.643
	Xeroradiography	W-A1		5	40	55	0.469	0.470
1980-1984	200000000000000000000000000000000000000			8	40	55	0.323	0.329
1900-1904	Screen Film			3	28	-	0.252	-
	(Low-Dose)	Mo-Mo	HVL = 0.31	5	28	-	0.156	-
	(Low-Dose)			8	28	-	0.101	-
				3	44	45	0.714	0.713
	Xeroradiography	W-Al	HVL = 1.26	5	44	45	0.524	0.524
				8	44	45	0.365	0.366
	Screen Film (Low-Dose)			3	27	29	0.286	0.289
1985-1989		Mo-Mo	HVL = 0.37	5	27	29	0.178	0.180
				8	27	29	0.115	0.117
		Мо-Мо	HVL = 0.49	3	27	29	0.368	0.370
				5	27	29	0.232	0.234
				8	27	29	0.151	0.152
	Xeroradiography	W-Al	HVL = 1.3	3	46	-	0.726	-
				5	46	-	0.536	-
				8	46	-	0.375	-
				3	25	28	0.269	0.274
1990-1999		Mo-Mo -	HVL = 0.35	5	25	28	0.166	0.170
	Screen Film			8	25	28	0.108	0.111
	(Low-Dose)	1/10-1/10		3	25	28	0.283	0.287
			HVL = 0.37	5	25	28	0.175	0.179
				8	25	28	0.113	0.116
	Screen Film			3	24	28	0.241	0.252
2000+	(Low-Dose)	Mo-Mo	0.03 mm Mo	5	24	28	0.149	0.156
	(LOW-DOSE)			8	24	28	0.097	0.101

Fluoroscopy

Radiography Mammography Fluoroscopy CT

- Beam energy
 - Higher kVp results in more penetrating beam and reduces tube current
- Collimation
 - Use the smallest field to image only the area of interest
 - Reduce the scattered radiation and leads to higher-quality images

Radiography Mammography Fluoroscopy CT

- Increase source-to-skin distance
 - Reduce the patient dose according to inverse square law
- Decrease patient-to-image intensifier distance
 - Reduce the patient dose since lower xray fluence is needed for acceptable image quality
 - Low image quality due to the increased scattered radiation

- Image magnification
 - Move the image intensifier farther from the patient or
 - Move x-ray source closer to patient
 - Increase the patient dose
- Grids
 - Reduce the scattered radiation to increase image contrast
 - Patient doses increase by a factor or two or more
- Patient size
 - kVp and tube current must be increased for thicker patients

- Beam-on time
 - Directly proportional to the patient dose
 - Several techniques to reduce beam-on time
 - Being aware of the amount of the beam-on time
 - Last-frame-hold feature (display the last image after the beam is off)
 - Aggressive use of low frame rate pulsed fluoroscopy
 - Release the fluoroscopy pedal frequently

Organ dose estimation: conversion factor*

 Heavily rely on computer simulation using Monte Carlo transport technique and computational human phantoms

Table 2. Organ dose conversion coefficients (mGy per Gy cm²) and c

	60 kVp 3.5 mm Al UFHADM weight percentile					
AP projection	10%	50%	90%			
Organs						
Colon	6.04E-03 (0.67%)	5.51E-03 (0.63%)	5.61E-03 (0.639			
Lung	4.70E-01 (0.05%)	2.83E-01 (0.06%)	1.45E-01 (0.089			
Stomach	2.33E-01 (0.15%)	1.85E-01 (0.15%)	1.10E-01 (0.199			
Bladder	8.88E-05 (10.14%)	7.53E-05 (9.21%)	6.52E-05 (10.62			
Liver	1.74E-01 (0.10%)	1.32E-01 (0.10%)	8.28E-02 (0.139			
Esophagus	2.56E-01 (0.21%)	1.77E-01 (0.23%)	8.71E-02 (0.329			
Thyroid	2.34E-02 (1.26%)	2.04E-02 (1.19%)	1.81E-02 (1.259			
Gonads	4.71E-05 (20.47%)	7.74E-05 (18.29%)	3.31E-05 (24.10			
Skin	8.07E-02 (0.03%)	7.26E-02 (0.03%)	6.56E-02 (0.039			
Brain	2.68E-04 (2.77%)	2.64E-04 (2.40%)	2.22E-04 (2.659			
Kidneys	1.27E-02 (0.62%)	1.00E-02 (0.63%)	6.58E-03 (0.779			
Salivary glands	2.55E-03 (1.94%)	3.45E-03 (1.46%)	2.40E-03 (1.819			
Adrenals	4.52E-02 (0.93%)	3.31E-02 (0.96%)	1.95E-02 (1.249			
Gall bladder	2.90E-02 (0.83%)	2.46E-02 (0.80%)	1.88E-02 (0.919			

^{*} Johnson et al. PMB (2009)

Dose estimation: Skin dose

- Direct dose measurement
 - Thermoluminescent dosimeter (TLD)
 - X-ray film
- Real-time direct dose measurement
 - MOSFET dosimeter
- Indirect dose measurement
 - Measure dose at the collimator port
 - Dose derived from system parameters (e.g. PEMNET system)
- Real-time parameters
 - Fluoroscopic time
 - Dose-area-product

Dose estimation: Operator*

^{*} Kim et al. HP (2008)

Dose estimation: Operator*

^{*} Kim et al. HP (2008)

Dose estimation: Operator*

^{*} Kim et al. HP (2008)

Computed Tomography

Two innovations in CT

Helical scan: Faster scan time Multi-detector: More information

Measurable quantities in CT

- Computed Tomography Dose Index (CTDI)₁₀₀
 - Single axial rotation
 - 100-mm long ion chamber and head/body CTDI phantoms

• Weighted CTDI: $CTDI_w = 1/3 CTDI_{100,center} + 2/3 CTDI_{100,peripheral}$

• Volume-weighted CTDI: CTDI_{vol} = CTDI_w / pitch

Dose Length Product (DLP) = CTDI_{vol} x scan length (cm)

Not designed for or representing patient <u>organ dose!</u>

Pitch in helical scan

Volume-weighted CTDI: CTDI_{vol} = CTDI_w / pitch

Factors affecting dose in CT

- Beam energy
- Photon fluence (current-time-product)
- Helical pitch
- Patient size

CTDI body (left) and head (right) phantoms

Factors affecting dose in CT: Energy

$\begin{array}{c} \textbf{Table 1} \\ \textbf{Changes in CTDI}_w \textbf{ in Head and Body} \\ \textbf{Phantoms as a Function of Kilovolt Peak} \end{array}$					
Beam	$ ext{CTDI}_{ ext{w}}$ in Head	$\mathrm{CTDI_w}$ in Body			
		Phantom			
Energy	Phantom	Phantoin			
(kVp)	(mGy)	(mGy)			
80	14	5.8			
100	26	11			
120	40	18			
140	55	25			

Note.—All other factors were held constant at 300 mA, 1 sec, and 10 mm. Results are from a single-detector CT scanner.

$$14 \times \left(\frac{140}{80}\right)^{2.5} = 56.7$$

^{*} McNitt-Gray Radiographics (2002)

Factors affecting dose in CT: Fluence (mAs)

$\begin{array}{c} \textbf{Table 2} \\ \textbf{Changes in CTDI}_w \textbf{ in Head and Body} \\ \textbf{Phantoms as a Function of Milliampere-Seconds Setting} \end{array}$					
Tube Current– Time Product (mAs)	CTDI _w in Head Phantom (mGy)	CTDI _w in Body Phantom (mGy)			
100	13	5.7			
200	26	12			
300	40	18			
400	53	23			

Note.—All other factors were held constant at 120 kVp and 10 mm. Results are from a single-detector CT scanner.

^{*} McNitt-Gray Radiographics (2002)

Factors affecting dose in CT: Pitch

Table 3 Changes in CTDI _{vol} in Head and Body Phantoms as a Function of Pitch				
	$\mathrm{CTDI}_{\mathrm{vol}}$	$\mathrm{CTDI}_{\mathrm{vol}}$		
	in Head	in Body		
	Phantom	Phantom		
Pitch	(mGy)	(mGy)		
0.5	80	36		
0.75	53	24		
1.0	40	18		
1.5	27	12		
2.0	20	9		

Note.—All other factors were held constant at 120 kVp, 300 mA, 1 sec, and 10 mm. Results are from a single-detector CT scanner.

^{*} McNitt-Gray Radiographics (2002)

Factors affecting dose in CT: Patient size*

16-cm diameter head phantom

32-cm diameter head phantom

^{*} ImPACT group (http://impactscan.org)

CTDI_{vol} vs. actual organ dose

Organ dose per CTDI_{vol} (abdomen-pelvis scan for adult male)*

^{*} Lee et al. Medical Physics (2011)

Organ dose estimation: Software tools

ImPACT

- NRPB database (UK)
- Hermaphrodite adult
- No children

ORNL adult hermaphrodite phantom

CT-Expo

- GSF database (Germany)
- Male and female adult
- Two children

BABY CHILD

ADAM EVA

Radiography Mammography Fluoroscopy CT

ImPACT

National Cancer Institute

CT-EXPO

Radiography Mammography Fluoroscopy CT

Organ dose estimation: Perimeter-base*

^{*} Turner et al. MP (2011)

Perimeter-based organ doses*

TABLE II. Results of exponential regression analysis describing $\overline{nD}_{P,O}$ as a function of perimeter (cm) for fully irradiated organs.

	Exponential reg	gression coefficients	Correlation coefficient		
Organs	A_O	B_O	\mathbb{R}^2		
Liver	3.824	-0.0120	0.98		
Stomach	3.780	-0.0113	0.97		
Adrenals	4.029	-0.0128	0.95		
Kidney	3.969	-0.0124	0.99		
Pancreas	3.715	-0.0122	0.97		
Spleen	3.514	-0.0111	0.95		
Gall bladder	3.994	-0.0115	0.95		

^{*} Turner et al. MP (2011)

Summary

- Epidemiology needs individualized organ dose.
- Three approaches
 - Measurement: expensive, labor-intensive, and not individualized
 - Calculation: cost-effective, fewer man-hour, and individualized
 - Conversion factor: derived from calculation
- Four different imaging modalities
 - Radiography
 - Mammography
 - Fluoroscopy
 - Computed Tomography

References

- Parry RA, Glaze SA, and Archer BR 1999 The AAPM/RSNA Physics Tutorial for Residents. Radiographics 19(5) 1289-1302
- McNitt-Gray MF 2002 AAPM/RSNA physics tutorial for residents: topics in CT. Radiographics 22(6) 1541

Thank you for your attention! Any questions or comments appreciated